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Density of states, Potts zeros, and Fisher zeros of th@-state Potts model for continuousQ
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The Q-state Potts model can be extended to noninteger and even co@gxexpressing the partition
function in the Fortuin-Kasteley(F-K) representation. In the F-K representation the partition funci@®, a)
is a polynomial inQ andv=a—1 (a=e?’) and the coefficients of this polynomiab,(b,c), are the number
of graphs on the lattice consisting bfbonds andc connected clusters. We introduce the random-cluster
transfer matrix to comput® (b,c) exactly on finite square lattices with several types of boundary conditions.
Given the F-K representation of the partition function we begin by studyingctitieal Potts model Zp
=7(Q,a.(Q)), wherea,(Q)=1+ Q. We find a set of zeros in the complex=/Q plane that map tdor
close t9 the Beraha numbers for real positi@e We also identifyQ (L), the value ofQ for a lattice of width
L above which the locus of zeros in the compfex v/\JQ plane lies on the unit circle. By finite-size scaling
we find that 10.(L)—0 asL—o. We then study zeros of the antiferromagne#d) Potts model in the
complexQ plane and determin@.(a), the largest value o) for a fixed value ofa below which there is AF
order. We find excellent agreement with Baxter’'s conjecmfé(a): (1—a)(a+3). We also investigate the
locus of zeros of the ferromagnetic Potts model in the com@eptane and confirm tha®:(a)=(a—1)2.
We show that the edge singularity in the compl@xplane approache®. as Q.(L)~Q.+AL Yqs, and
determine the scaling exponeyy for several values oQ. Finally, by finite-size scaling of the Fisher zeros
near the antiferromagnetic critical point we determine the thermal expgpesta function ofQ in the range
2=<Q=3. Using data for lattices of size8L <8 we find thaty, is a smooth function o) and is well fitted
by y,=(1+Au+Bu?)/(C+Du) whereu= —(2/)cos Y(\JQ/2). ForQ=3 we findy,=0.6; however if we
include lattices up td. =12 we findy,=0.50(8) in rough agreement with a recent result of Ferreira and Sokal
[J. Stat. Phys96, 461 (1999].
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I. INTRODUCTION =JkgIn(y4—Q—1), and evaluated the critical free energy

and internal energy. The Baxter formula for the critical tem-
The Q-state Potts mod¢lL] in two dimensions exhibits a perature gives the known exact value =2, a critical
rich variety of critical behavior and is very fertile ground for point at zero temperature f@=23, and no critical point for
the analytical and numerical investigation of first- andQ>3. For continuousQ in the range &cQ<3, Kim et al.
second-order phase transitions. With the exception ofthe [27] have studied the antiferromagnetic Potts critical point
=2 Potts(Ising) model in the absence of an external mag-through the zeros of the partition function and found good
netic field, exact solutions for arbitrar® are not known. agreement with the Baxter formula. With the exception of
However, some exact results at the critical temperature havée Ising model, the critical exponents of the Potts antiferro-
been established for th@-state Potts model. From the dual- magnets are not known. However, @k 3 the ratio of criti-
ity relation the ferromagnetic critical temperature is knowncal exponentsy/v is known to be 5/316,17].
to be T.=J/kgIn(1++/Q) for the isotropic square lattice. By introducing the concept of the zeros of the partition
Baxter[2] calculated the free energy @t in the thermody-  function in thecomplexmagnetic-field planéYang-Lee ze-
namic limit, and showed that the Potts model has a secondes), Yang and Led?28] proposed a mechanism for the oc-
order phase transition fop<4 and a first-order transition currence of phase transitions in the thermodynamic limit and
for Q>4. The critical exponents for the ferromagnetic Pottsyielded a new insight into the unsolved problem of the Ising
model are well knowr3-5|. model in an arbitrary nonzero external magnetic field. It has
On the other hand, the antiferromagnetic Potts model ibeen showr{28—-3Q that the distribution of the zeros of a
much less well understood than the ferromagnetic modeimodel determines its critical behavior. Lee and Y4a§|
Recently the three-state Potts antiferromagnet on the squaadso formulated the celebrated circle theorem which states
lattice has attracted a good deal of interg&t26]. Baxter that the Yang-Lee zeros of the Ising ferromagnet lie on the
[10] conjectured that the critical point of the Potts antiferro-unit circle in the complex magnetic-fieldx€ e?") plane.
magnet on the square lattice is given by, However, for theQ-state Potts model witl®>2 the Yang-
Lee zeros lie close to, but not on, the unit circle with the two
exceptions of the critical poimt=1 (h=0) itself and the
*Present address: Department of Chemical Engineering, Princetareros in the limitT=0 [31].
University, Princeton, NJ 08544. Electronic address: Fisher[32] emphasized that the partition function zeros in
seungk@princeton.edu the complex temperature platiEisher zerosare also very
"Electronic address: creswick.rj@sc.edu useful in understanding phase transitions, and showed that
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for the square lattice Ising model in the absence of an extewhereJ is the coupling constantj,j) indicates a sum over
nal magnetic field the Fisher zeros lie on two circles in thenearest-neighbor pairsy is the Kronecker delta, and
thermodynamic limit. In particular, using the Fisher zeros=1,2,... Q. The partition function of the model is

both the ferromagnetic phase and the antiferromagnetic

phase can be considered at the same time. The critical be- 7 - 2 o BHg )
havior of the Potts model in both the ferromagnetic and an- Q (o '

tiferromagnetic phases has been studied using the distribu-

tion of the Fisher zeros, and the Baxter conjecture for thavhere{s,} denotes a sum ove®"s possible spin configu-
antiferromagnetic critical temperature has been verffB&.  rations and8=(kgT) 1. If we define the density of states
Recently the Fisher zeros of th@-state Potts model on with energy GSE<N, by

square lattices have been studied extensively for int€ger

>2 [33—-44 and nonintege® [27]. Exact numerical studies _ _ o

have shown[27,35,36,40,41,43 44 46that for self-dual o(E)= %} 5( = (,EJ> o "’J))’ @
boundary conditions the Fisher zeros of @& 1 Potts mod-

els on a finite square lattice are located on the unit circle irwhich takes on only integer values, then the partition func-
the complexp plane for Rep) >0, wherep=(e#’—1)/\/Q.  tion can be written as

It has been analytically shown that all the Fisher zeros of the
infinite-state Potts model lie on the unit circle for any size of
square lattice with self-dual boundary conditidd], and

the Fisher zeros near the ferromagnetic critical point of the
Q>4 Potts models on the square lattice lie on the unit circlevherea=e”’ and states witlE=0 (E=N,) correspond to
in the thermodynamic limif45]. Chenet al.[41] conjectured the antiferromagneti¢ferromagnetic ground states. From

that whenQ reaches a certain critical val@,(L) all Fisher ~ EQ.(4) itis clear thatZ(a) is simply a polynomial ire. We
zeros forL X L square lattices with self-dual boundary con- have calculated exact integer values 10,_3(E) of the
ditions are located at the unit circlp| = 1. In this paper we three-state Potts model on finitex L square lattices up to

verify this conjecture and find th&.(L) approaches infinity L =12 using the m|_crocanon|cal transfer matrix{M) [52].

in the thermodynamic limit, and we study the thermal expo- Here we des_crlbe _brl_efly the. TM [52] on an LXN .

nenty; of the square lattice Potts antiferromagnet using theguare I'att|c.e with periodic bounaary concjmo_ns in the _hon-

Fisher zeros near the antiferromagnetic critical point. zpnta! d|rect|or(length_l_) and free boﬂ?da”?s n the vertical
In this paper we also discuss the partition function zero%’rec'{Ion (lengthN). F|r§t, an arrayw™, which is !ndexed

in the complexQ plane (Potts zeros of the Q-state Potts PY the energyE and variablesr;, 1<i<L, for the first row

model. The Potts zeros #J=—o have been investigated °f Sites is initialized as

Np
zQ<a>=E§0 Qo(E)aF, (4)

extensively to understand the ground states of the antiferro- L
magnetic Potts model and the chromatic polynomial ingraph  ,()(E: 5, 0y, ... .0 ) =8| E= D, 8(oi,0i41)|. (5)
theory[23,26,47-5] Recently the Potts zeros at finite tem- =1

peratures have been studied for cyclic ladder graphs and o ) ) . .

efl<1 [50]. Now each spin in the row is traced over in turn, introducing
In the next section we describe two algorithms to evaluaté N€W Spin variable from the next row,

the density of states, from which the exact partition function

of the Q-state Potts model is obtained. The first algorithm

(microcanonical transfer matpixs applied to only intege®

but allows us to calculate the density of states for relatively => oW(E-8(a},00);01,05, ...,0). (6)

larger lattices, while the second algorithfrandom-cluster 1

transfer matn)(_gweS the density of states fgjr any value_@f This procedure is repeated until all the spins in the first row

In Sec. Ill we discuss the Potts modetat e=1+\Q, its  paye been traced over, leaving a new function oflttepins

Potts zeros, and the related properties of the Fisher zeros. |§ the second row. The horizontal bonds connecting the spins
the subsequent two sections we study the Potts zeros for the

) et ity the second row are then taken into account by shifting the
antiferromagnetic interval € a<1 (Sec. IV) and for the fer- energy,
romagnetic intervah=1 (Sec. V). In Sec. VI we discuss the
thermal exponeny, of the square lattic€-state Potts anti- w(z)(E;o'i,o'é, ce0))
ferromagnet for 2Q=3 using the Fisher zeros.

:U(E;O’i,()'z, cey0L)

L
Il. DENSITY OF STATES = E—zl 8(oi ,0i41);01,05, ....0(].
The Q-state Potts model for integ€) on a latticeG with 7)
N, sites and\, bonds is defined by the Hamiltonian
This procedure is then applied to each row in turn until the
Ho= _J;> 8(oi,07), (1) E;al (Nth) row is reached. The density of states is then given
1]
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Qo(E)=2 2 -2 oN(E;a),0%, ...,00). (8

r ’ !
a1 0 IL

The permutation symmetry of th@-state Potts model allows

us to freeze the last spin =1 of each row. Now we need to O L
consider onlyQ"~* possible spin configurations in each row
instead ofQ" configurations, and we save a great amount of o PA PA ® ® ®

memory and CPU time.
On the other hand, Fortuin and Kastele}d3] have

shown that the partition function is also given by O—o—¢ 9o o
2@Q)= X (a—1)"¢"Qe®, (©) AN GEND GRED (RN SR ¢
G'CG
L O L 4 L 4 L L L J
where the summation is taken over all subgra@is G, 5 1 2 3 4 5
andb(G') andc(G') are, respectively, the number of occu-
pied bonds and clusters i@’. In Eq. (9) Q need not be an FIG. 1. 5X5 square lattice with self-dual boundary conditions.

integer and Eq.(9) defines the partition function of the

Q-state Potts model for continuow@®. The random-cluster termined for each site and the top labtel (j=1,2,... L)

(or Fortuin-Kasteleynrepresentation of the Potts model, Eq. for the sitej + L in the second row for each bond configura-
(9), is also known as the Tutte dichromatic polynomial or thetion. The top labet; is the smallest number of the set of
Whitney rank function in graph theoifp0,51]. Introducing indicesj=1,2, . .. | for the sites in the second row belong-
the density of states indexed by the number of occupieghg to the same cluster that includes the itel. Because

bonds Gsb<Nj, and the number of clustersslc<Ng, t;<j, the maximum number of sets of top labéts is L!
Counting the cases =i gives the number of clusters
®(b,c)=> 8(b—b(G'))é(c—c(G)), (10 Given ¢{™(b,c,{t}), #{™ (b,c,{t}) is calculated re-
G’ cursively by
which also takes on only integer values, the random-cluster ,
representation of the Potts model can be written as X R ,
" Vbefth=2 X oMb {t'Hs(b—b
N, Ng y=1p’c" {t'}
_ _ bHc 2 ’
2(2,Q)= 2 X ®(bo)a-1"Q" (1D —by)a(c—c'—Ac)a({t'}-{th) (12

which is again a polynomial ina—1 andQ. We have evalu-

ated exact integer values fdr(b,c) on finite LX L square  agiple bond configurations in the newly added pigcen-
lattices up td. =8 for free, cylindrical, and self-dual bound- gjgting of the horizontal bonds in theth row and the verti-

ary conditions using the random-cluster transfer matrix. The. 5| honds between thath row and the -+ 1)th row, and
self_-dual Iatt_lces_con5|dered in 'FhIS paper are periodic in th%g is the number of occupied bondsgn The sites in g are
horizontal direction and there is another site above lthe labeled from left to right by 1,2 .. L in the mth row and

XL square lattice, which connectslicites on the lastl(th) by L+1L+2,...,4 in the (m+1)th row. We again use
row (Fig. 1. _ the HK algorithm to determine the cluster labels
The algorithm (random-cluster transfer matjixused to (s,,5 s,.} and the number of clusters in g, and the

obtain the density of stataB(b,c) is similar in spirit to that ~ * - 2" * " " ~2k ey ey in g,

of Chen and HU54]. We consider arL XN square lattice updatedold top labels{t }z{tl’tZ’. .-« ot(} and the new
with periodic boundary conditions in the horizontal direction ©°P 1abels{t}=1ts,t5, ... .t} making a comparison be-
(length L) and free boundaries in the vertical direction tween ’the cI’us¥er Iaberl{ssl,sz, S8 a”‘?‘ th? old top la-
(lengthN). We define¢{™(b,c,{t}) as the density of states PIS1U'}={t1,t>, ... t{}. In Eq. (12) Ac is given by the
for the L X m square lattice without the horizontal bonds in Chen-Hu formulg 54]

the mth row as a function of the number of occupied bonds

b=0,1,...,2(m—1), the number of clustersc Ac=cg—n-n'+n", (13
=1,2,...Lm, and the top labelg}={t;,t,, ... t .} which

tell whether each site in theith row is connected to the ) o
other sites in the same row. wheren is the number of the cluster labels satisfyigg-i

The first step is to calculate;ﬁ{z)(b,c,{t}) using the fo_r i:,1’2-’ ... L, n’" the number of the old top labels satis-
Hoshen-KopelmarHK) algorithm([55]. The sites in the first fYing i =i, andn” the number of the updated old top labels
row are labeled 1,2 .. L from left to right andL+ 1 to 2L satisfyingt{ =i.
in the second row. Cluster labeds (i=1,2,...,2) are de- Finally, the density of state®(b,c) is obtained by

for m=2,3,...N—1, where y labels the 2% (=vymay)
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Ymax

dbo)=2 X oMb’ {t'}d(b—b' —by)
’}/:l b/,C,,{t,}
X 8(c—c'—Ac) (14

with ymax= 2" andg made up of the horizontal bonds in the
last (Nth) row.

The random-cluster transfer matrix works very well, but
for comparatively large lattices a considerable amount of

memory is required to stor¢{ (b,c,{t}). At the expense of

a slight increase in the complexity of the code it is possible
to reduce the memory requirements substantially. First, th
L! sets of top labels include many unused sets, such a¥

{...t=iy=it=j,...} (i<j<k), which account for
56.7% of all sets foL.=5 and 96.8% folL =10 and can be
removed easily fromp{™ (b,c,{t}). Second, we should con-
sider the fact that only some rangemis used for a fixed.
For example, inp$>(b,c,{t}) onlyc=1 to 11 (Sc=11) are
needed fob=24. Herec=1 results from the sparsest distri-
butions of 24 occupied bonds ane- 11 from the most com-
pact distributions.dc<11 for all b+ 24, and ¢c) 4= 11.
We can calculate &c)may easily for (N (b,c,{t}) and re-
duce a large amount of memory. Third@(b,c) can be ob-
tained directly from¢{™(b’,c’ {t'})(M=<N—1) with Yy

PHYSICAL REVIEW B3 066107

wherew= Q. The coefficient, of the new polynomial
Zcp satisfy

Ng—1
> K,=2M (18)
r=0

and

Ng—1
20 K, (—1)"=0. (19

dable | shows the coefficients, for the 8X8 square lattice

ith free boundary conditions.

In addition to the ferromagnetic critical poird.=1
+/Q, the pointa,=1—/Q, which is sometimes referred to
the unphysical critical pointalso maps into itself under the
dual transformationg—1)(a—1)=Q [1]. This leads us to
consider the corresponding critical Potts partition function

Ng—1
Zep=wNst1 EO KW', (20)
=

where w= —w. Evidently Zcp can be obtained fronZcp
simply by continuingw to negative values. With this under-

=2L+*2LIN=m) ysing Eq. (14). This method decreases standing we consideZ.p(w) for arbitrary complex values
memory requirements but increases CPU time, while thef w. Note that the map of the complex plane on to the
former two methods reduce both the memory and CPU timeomplexQ plane is now two to one.

requirements. In general, the random-cluster transfer matrix Figure 2 shows the Potts zeros in the compleglane of

based on Eq(12) is very fast, taking just 30 s on a PC with the critical Potts model on an>88 square lattice with self-

one pentium 100 MHz CPU to obtaib(b,c) on the 55
square lattice with free boundary conditions.

The density of state§lo(E) is related to the density of
statesd(b,c) by

Ng

b
2<b<b,c>Q°(E)<—1>b-E (15

c=1

Np
e~ 3,

for integerQ. In Eqg. (15) Q need not be an integer and Eq.
(15) defines the density of staté€k,(E) of the Q-state Potts
model for nonintegeR.

lll. THE CRITICAL POTTS MODEL

At the ferromagnetic critical poina,=1+ Q, the par-
tition function of theQ-state Potts model becomes

Zcp=2, ®(b,c)(1/Q)PT%,

b,c

(16)

which is a polynomial inyQ. This defines what we refer to
as thecritical Potts model. Sincéd=Ng—1, c=1 andb

=0, c=N; set the lowest and highest orders, respectively, irf:ioSi

the polynomial, we can write Eq16) as

Ng—1
Zop=wNst Eo Kew',
“

17

dual boundary conditions. The zerovat0 is N+ 1 degen-
erate, and most of the remainitNg—1 zeros lie in the half
space Ref)<0. Several of these zeros lie on the negative
real axis, and these will map on to the positive 1@adxis as
shown in Fig. 3. Some of these zer@able 1)) lie at or close

to the Beraha numbefg7]

o
B,=4 co§ﬁ (21)

with n=2,3,4 ... and G6<B,<4. In a study of the phase
diagram of the Potts model Sale[t8] assumed that the

Potts model at the unphysical critical poiat=1—Q is
singular whenQ=B,,, and our results verify this observa-
tion. Table Il shows the Potts zeros of the critical Potts
model on thel XL square lattice that lie at or close to the
Beraha numbers for freeNg=2L2—2L), cylindrical (2L2
—L), and self-dual (2?) boundary conditions. As the num-
ber of bonds\,, increases, the number of the Potts zeros at or
close to the Beraha numbéBs, increases for a fixed, and
asL increases the number of the Potts zeros at or clogg, to
increases for any specified type of boundary conditions. We
expect that in the thermodynamic limit the Potts zeros on the
tive real axis cover all the Beraha numbds (n
23,...).

For self-dual boundary conditions there exist unexpected
Potts zeros on the positive real axis Q>4 (Table IlI).
These zeros do not exist for nondual boundary conditions,
and the largest of these zeros, which we shall denote by
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TABLE I. The coefficientK, of the partition functiorZ.p of the critical Potts model on theX88 square
lattice with free boundary conditions.

K,

K,

2561398756299931321297272832

0 126231322912498539682594816 1
2 25524986518920425393717379072 3 166557700763955734137534296320
4 800610370286991686735405550336 5 3023834586769553668673015126432
6 9347575153984981720573769774608 7 24326213916516119921387986971009
8 54404758441262921869365590686720 9 106224421227588059984113069365972
10 183329627865230663968273103188608 11 282506930412461406319413706064154
12 391942582489345467968147273830784 13 492998772987796894034162031881014
14 565568818070192070648821897874128 15  594803437106450324737629079389339
16 576045479726330572980576680006144 17  515761419835859402146512922316166
18 428419763789360447590812451240080 19  331188758886170694649818860535541
20 238937966305748243499621822108592 21  161285868900631598864845612258887
22 102094428513780610351844031072160 23 60729794216206721605782144017468
24 34010305186209829834846747925664 25 17962439609348242109957007244868
26 8960463658391600957849394069728 27 4227668735828771561070342983222
28 1888880629020154547292686697440 29 800023985396669919928624375932
30 321508677911960109772525527808 31 122688547769932427716252035294
32 44483696316227122956909056000 33 15331317278052765348109117036
34 5024202380355112158475486704 35 1565743527537870861554921235
36 464007025651505425890675200 37 130734234800779492211596986
38 35006515754308767635423136 39 8903442105259073008726006
40 2149257909558929021370016 41 491955405372613275069456
42 106650313357232985654928 43 21867081986237184782295
44 4233470330438712180496 45 772403311175092063841
46 132514803950430984480 47 21322374026497257618
48 3208188678305076656 49 449814829279725547
50 58534057491001584 51 7036231117685951
52 776998275543312 53 78304124284593
54 7144741728032 55 584538167122
56 42365906128 57 2678567507
58 144763280 59 6504139
60 233296 61 6265
62 112 63 1
4
10
2} sl |
= of TSN 5 2
E : g y
_2 L i
_2 L
_6 L i
45 -3 = 1 3 ol _ .
Re(w) -10 -6 -2 2 6
Re(Q)

FIG. 2. Potts zeros in the complax (=Q9) plane of the

partition functionZqp for the 8x8 square lattice with self-dual

boundary conditions.

FIG. 3. Potts zeros in the compl&X plane of the critical Potts
model for the 88 square lattice with free boundary conditions.
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TABLE Il. The Potts zeros on the positive re@laxis of the critical Potts model that lie at or close to the
Beraha numberB,, (n=2,3,...).

Boundary condition free cylindrical self-dual self-dual
System size &8 8% 8 5X5 8x8
B,=0 0 0 0 0

B;=1 1 1 1 1

B,=2 2.000000 2.000000 2.000000 2.000000
B;=2.618034 2.618034 2.618034 2.618055 2.618034
Bg=3 3.000031 3.000000 2.992072 3.000000
B,=23.246980 3.226656 3.246976 3.246980
Bg=3.414214 3.415672 3.412158 3.414685
Bo=3.532089 3.521330 3.524855
B1,=3.618034 3.618701
B1s=3.847759 3.839893
B3p=13.956295 3.957208

Bgs=3.990369 3.990438

QmaxL), has an interesting significance. Recently the parti-of zeros for each group Is,, whereL, andL, are the lattice

tion function zeros in the complex temperature pléfrisher
zerog have been studied extensively for the Potts model

square lattice are located on the unit circle in the complex

sizes in the horizontal and vertical directions, respectively.

By using the Bulirsch-StoessT) algorithm[56] we ex-
[27,33—-4§. By numerical methods it has been showntrapolated i@ (L) for finite lattices to infinite size. The er-
[27,35,36,40,41,43,44 46hat for self-dual boundary condi- ror estimates are twice the difference between the 1,1)
tions the Fisher zeros of th@>1 Potts models on a finite gpg (h—1,2) approximants. Fop=1 (the parameter of the

plane for Rep)>0, wherep=(a—1)/\/Q. Chenet al.[41] 10[ go7s o o,
conjectured that wher@ reaches a certain critical value ,o °
Q.(L) all Fisher zeros are located on the unit cirfgé=1. 06l ° .
However, the value 0®.(L) and how it scales with were °° °
not addressed. We find th&,(L) is identical toQpay(L) 02} °
and thatQ.(L) increases with. as shown in Table IIl. % ®

Figure 4 shows the Fisher zeros in the compigptane of T-0.2f 0 o
the Q-state Potts model on thex#4 square lattice with self- ° o
dual boundary conditions. F&@=75 the two zeros on the o8l ° o
negative real axis lie off the unit circle, while f@ =76 all °, °
the Fisher zeros lie on the unit circle. AQ=Q. —1.0f I
(=75.37 ... forL=4) the two zeros lie op=—1. In gen- 10 06 -0z 02 06 10
eral, for the values of) (both Q<4 and Q>4) that are (@) Re(p)
determined from the Potts zeros on the positive real axis, two
Fisher zeros always lie gi=—1. Q=1 is exceptional in 1.0 Q=76 Lo e
that all Fisher zeros of the one-state Potts model ligat W ° R
—1 [41]. Note that in Fig. 4b) the Fisher zeros are grouped 0.61 o
and there exists a wide gap between two neighboring groups °° °
except forp= —1. Whenever all Fisher zeros lie on the unit 02l e o
circle, the number of groups of zeros ik 2and the number % o

TABLE Ill. The Potts zeros on the positive real axis 94 —0.27 ° e
for the L XL square lattice with self-dual boundary conditions. o °

—0.6} . . ]
L °,
4 5 6 7 8 -1.0t ° oo
-1.0 -06 -0.2 02 0.6 1.0
75.373518 185.886317 395.130118 754.036414 1324.684018 (b) Re(p)
7.566911 21.911010 40.294754 66.309209
6.401881 15.678097 FIG. 4. Fisher zeros in the compl@plane of theQ-state Potts

model on the & 4 square lattice with self-dual boundary conditions
for (@) Q=75 and(b) Q=76.

5.326082
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FIG. 5. Potts zeros in the compleQ plane of the chromatic
polynomial on the & 8 square lattice for cylindricdll5] and self-
dual boundary conditions.

FIG. 6. Potts zeros of the dichromatic polynomial for8<1
on the 7X7 square lattice with self-dual boundary conditions.

Q.(a) to be the value ofQ for a given value ofa below
BST algorithm we get 10,=0.0007(8) and ).  which there is antiferromagnetic order. Because four colors
=0.0001(7) fore=2. These results imply that in the ther- are needed to color ah XL square lattice with self-dual
modynamic limit all the Fisher zeros lie on the unit circle boundary conditions such that no two nearest neighbors have
only in the limit Q—o [42]. Conversely, this observation the same color, there exists a trivial Potts zeroQat=3
implies that the locus of zeros in the thermodynamic limit forwhenL=3,5,7, .. ..
finite Q is an open question. Figure 6 shows the Potts zeros of the dichromatic polyno-
mial at several temperatures for thex7 lattice with self-
dual boundary conditions. Az is increased the zeros move
toward the origin and converge on the pol@&=0 for a
=1 [50]. The antiferromagnetic critical point is given by
a.(Q)=+y4—Q—-1[10,27, from which we have

IV. ANTIFERROMAGNETIC POTTS ZEROS

For antiferromagnetic interactiah< 0, the physical inter-
valis Osa<1 (0<T=w®). At zero temperaturea=0) the
partition function is

Qc(@)=(1-a)(a+3). (23
z=2 ®(b,c)(—1)°Q", (22)  Table IV shows the Potts zer@(L) on (L=4,6,8) or clos-
>.e estto L =3,5,7) the positive real axis fa=0.5. From the
BST extrapolation we obtainedQ.=1.78(18) (from L
=4,6,8) andQ.=1.77(36)-0.01(3) (from L=3,5,7) in
agreement with Eq(23). Figure 7 compares E@23) (con-
tinuous curve with the BST estimates fronQ.(a,L) for L
=3,5,7 and self-dual boundary conditions for several values

which is also known as the chromatic polynomial in graph
theory [50,51]. Figure 5 shows the zeros of the chromatic
polynomial in the complexQ plane for the & 8 square lat-
tice for cylindrical[47] and self-dual boundary conditions. In
Fig. 5, except for the zeros at the Beraha numbers 0, 1, and
(Q=2.0000000000007 for cylindrical boundary condi- ota.
tions), the Potts zeros are distributed along curves that cut
the positive real axis betweegd=2 and 3. The intersection

of the locus of the Potts zeros with the real axis depends on
the boundary condition: fok =8 and cylindrical boundary ~ For ferromagnetic interactiod>0, the physical interval
conditions we hav€=2.551 073, while for self-dual bound- isa=[1] (T=[«,0]). Figure 8 shows the Potts zeros, of
ary conditions we find a pair of zeros @=2.636589 and the dichromatic polynomial oh XL lattices with cylindrical
2.645969, which are slightly larger than the fifth Beraha
numberBs=2.618 034. For the X7 self-dual lattice these
zeros lie atQ=2.621577 and)=2.684 634(Fig. 6). In ad-
dition, for L =7 there are isolated zeros on the real axis at thé!2=0-5-
Beraha number8,=0, B;=1, andB,=2, and an addi-

V. FERROMAGNETIC POTTS ZEROS

TABLE IV. The Potts zeros on or closest to the positive real
axis for theL XL square lattice with self-dual boundary conditions

tional zero appears &¢=3 (Fig. 6). Q=3 corresponds to L Qe(L) L QL)

the critical valueQ. [48,49 that separates the regio® ( 3 1.279406-0.161071 4 1.441800
<3) with antiferromagnetically ordered ground states from 5 1.49987% 0.0695198 6 1.574011
the region Q>3) of disordered states dt=0. Here we 7 1.583953 0.040760% 8 1.632666

generalize this concept to finite temperatures and define
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o L
0.0

0.4 0.6 0.8

a

0.2 1.0
FIG. 7. BST extrapolation ofQ4F as a function ofa for self-

dual boundary conditions. The continuous curve is given(y
=(1-a)(a+3).

boundary conditions fom=1+2=2.414... anda=1
+3=2.72.... Forfree and self-dual boundary condi-
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FIG. 8. Potts zeros in the compl&X plane of the dichromatic
polynomial on theL XL square lattices with cylindrical boundary

tions the distribution of the Potts zeros is similar to that forconditions fora>1.

cylindrical boundary conditions. Unlike the antiferromag-
netic Potts zeros which are distributed mainly in the ®g(
>0 region(Figs. 5 and & many ferromagnetic Potts zeros
lie in the ReQ) <0 region. With the exception of the trivial

10 shows thessT estimates frony,(L) for a=2 (Q.=1),
1+42 (Q.=2), 1+3 (Q.=3), and 3 Q.=4). The ex-
ponenty, increases aa (or Q) increases. Figure 10 com-

zero atQ=0 the ferromagnetic Potts zeros are distributedpares our results foy, versusa.(Q) with the den Nijs for-
along a single curve that moves away from the origireas myla [3,27] for the thermal exponeny,(a.(Q)) of the
increases. There is no zero on the positive real axis, but therromagnetic Potts model. Clearly the general behaviors of
zeroQ,(a,L) closest to the positive real axis approaches thg,  andy, with a,(Q) are similar; these initial results are of

real axis ad increases. As in the Yang-Lee thedB88], we
expectQq(a,L)—Q.(a) in the limit L—oc. Table V shows
theBsT estimates fronQ,(a,L) ata=1+ 2 and 1+ /3 for

insufficient precision to settle the question whethgry, or
not.

different boundary conditions, suggesting that the locus ofVI_ FISHER ZEROS AND POTTS ANTIFERROMAGNETS

the Potts zeros cuts the positive real axisat=2 and 3,
respectively, in the thermodynamic limit. From the ferro-
magnetic critical poina,(Q)= 1+ Q, we obtain

Q.(a)=(a—1)%

which we have confirmed foa=1++2 and 1+.3 and
other values o>1 (Fig. 9.

The behavior of the closest ze@ (a,L) suggests a scal-
ing exponenty, defined as

(29)

Qi(a,L)=Q.(a)+AL Ya, (25
For finite lattices we defing27,38,39,46,5P
Yo(L)=— |n{|m[Q1(L+1)]/|m[Q1(L)]}_ (26)

IN[(L+1)/L]

The exponeny, is to the Potts zeros in the compl&plane
what the thermal exponemt (or the magnetic exponewt,)

is to the Fisher zeros in the complex temperature pléne
Yang-Lee zeros in the complex magnetic-field plafégure

For antiferromagnetic interactiah<O the physical inter-
val is O=a=ef'<1 (0<T=w=), which corresponds to

-1
(27)

From the exact partition functions, Egél) and (11), we
have evaluated Fisher zeros of the Potts model. Figure 11
shows the Fisher zeros in the compleplane of the three-
state Potts model on a ¥21.2 square lattice with free bound-
ary conditions. The Fisher zeros in the compfeplane of

the Q-state Potts model for several values of noninteQer
have been shown for thex88 square lattice with self-dual
boundary condition§27]. Figure 12 shows the Fisher zeros
in the complexp plane of theQ=2.5 Potts model on an 8

X 8 square lattice with free boundary conditions. In Figs. 11
and 12 there is a group of complex zeros approaching the
antiferromagnetic critical pointa,=4—Q—1, equiva-
lently, p.=(a.—1)/y/Q, and crossing the real axis at this
critical point in the thermodynamic lim{27]. For anL XL

TABLE V. The BsT estimates fronQ,(a,L) for different boundary conditions.

a Free Cylindrical Self-dual
1+42 1.90(10)+ 0.09(24) 1.94(7)+0.15(14) 1.95(10)%+0.13(11)
1+3 2.84(9)-0.13(31) 2.88(2)+0.00(15) 2.89(8)-0.03(10)
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FIG. 9. BsT extrapolation ofQ;" as a function ofa for self- Re(p)

dual boundary conditions. The continuous curve is given(y
=(a—1)% FIG. 11. Fisher zeros in the compl@xplane of the three-state
Potts model on 1 12 square lattice with free boundary conditions.
square |att|cac(|_) or pC(L) denotes the closest zero to the The dashed line is the antiferromagnetic interval.
antiferromagnetic critical point or edge singularity. Based on . ] . )

the finite-size scaling law of the partition function zeros nearcritical point monotonically only if we consider a sequence
the critical point{57,58 we expect of lattices withL even. For free boundary conditions this is
not a problem and the increased effectiveness ofgbe
algorithm with longer sequences more than compensates the
stronger finite-size effect®3,27]. In Fig. 13 there are two
BST estimates forQ=3. The upper estimate resulted from
data forL=3-8, while the lower one usés=3-12. In Fig.

13 the continuous curve is the fit to tBsT estimates with

Imlag(L)]~L~, (28)

from which we can estimate the thermal expongiit.) for
finite lattices a§27,38,39,46,5P

_In{im[a(L+1)J/Im[ac(L)]}

yi(L)= In[(L+1)/L] (29) _1+ALH-BU2
| Y= cipu (30
Table VI shows the thermal exponenggL) of the Ising
(Q=2) antiferromagnet and the three-state Potts antiferrowhere
magnet for free boundary conditions. By using gz algo-
rithm we extrapolated our results fgy(L) to infinite size for 2 1 \/6
2<Q=3. Figure 13 shows the thermal expongnptof the u=-—— cos "\/3, (31)
Potts antiferromagnet by thesT estimates withw=1 (the
parameter of thessT algorithm for free boundary condi- and A=-2.2821, B=-7.4390, C=3.9818, and D

tions. For thessT extrapolation of finite-size results of the =7.4011. The variable arises naturally in the expressions
Potts antiferromagnet we prefer free boundary conditions t@or the free energy[ — (7/2)u] at the ferromagnetii2] and
other boundary conditions. The reason for this is that, eveRntiferromagneti¢10] critical temperatures, and in the criti-
though finite-size effects are larger for free than cylindricalgg| exponentsy, [3,5,27 andy, [4,5] of the ferromagnetic
boundary conditions, the edge singularity approaches thpotts model. The form used in E@®O) has also been used to
describe the critical exponent, of the ferromagnetic Potts

1.5¢ N model[4].
—— free //
| | —— cylindrical / | F . 1
1.3 +— self—dual /// 1.2 s sA‘AAA AAA‘A
n s !I R ‘L
11F e 1 i i
- e - 4 .
B e 0.4| % 4‘
0.9} . 1 e K
e F g |. I
- £ . i
0.7f s e .
. 4 Bx8 lattice
ﬁ —0.4r, ‘? x  critical point
A‘ : A
0.5} s : -
20 22 24 26 28 3.0 ‘a, “ N
LAaaoa at
¢ -1.2t fiiiaaast
. N -2 -1 0 1
FIG. 10. The exponent, as a function ot for free, cylindrical, Re(p)

and self-dual boundary conditions. The slight horizontal offset for
data for cylindrical and self-dual boundary conditions is for clarity
only. The long-dashed curve is the thermal expongrty the den
Nijs formula.

FIG. 12. Fisher zeros in the complpyplane of theQ=2.5 Potts
model on 8<8 square lattice with free boundary conditions. The
dashed line shows the antiferromagnetic interval.
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TABLE VI. The thermal exponentg,(L) of the Q-state Potts
antiferromagnets foQ=2 and Q=3 with free boundary condi-
tions. The last row is th@sT extrapolation withw=1 to infinite

size.

L y(L)(Q=2) yi(L) (Q=3)

3 0.859670530424 0.672417300113
4 0.882900616441 0.840771366429
5 0.895500892567 0.750192805568
6 0.904846051999 0.714132507277
7 0.912493138251 0.694522575800
8 0.918981910221 0.681414203729
9 0.924586147759 0.671514256321
10 0.929481322004 0.663473505003
11 0.933794047470 0.656641075731

1.00000%9)

0.508)

The BST estimates of the thermal exponentfor Q<3
are insensitive to the parameter of theT algorithm, w.
However, asQ approaches 3 thesT results for the three-
state Potts antiferromagnet are very sensitiveotd=or ex-
ample, we obtained;=0.50(8) forw=1, y;=0.59(2) for
w=2, andy,=0.60(2) for w=3 using data fol. =3-12.
The BST estimates of the thermal exponents of Restate
Potts antiferromagnets for non-integ@rare also sensitive to
o when Q~3. Recently Ferreira and Sokf20,24] have
suggested the correlation length for the three-state Potts a
tiferromagnet has the form

é~a W(—Ina)' (1+cia+ca®+---) (32

with y,= 3 [18,20,24, r~1, andc,;~15. ForQ=3 the sen-
sitivity of the BST estimates of the thermal exponent do
may result from this kind of logarithmic behavior.

Figure 14 shows thessT results extrapolated from
Im[ac(L)] for L=3-12 of the three-state Potts antiferro-
magnet with free boundary conditions as a functionaof
along with the error estimates. When we use #ls& algo-

PHYSICAL REVIEW B3 066107
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FIG. 14. BST extrapolation of the imaginary part of the critical
point, Im(a.), for the three-state Potts antiferromagnet as a function
of the parametew.

parameterw is the critical exponeny, [56]. We have ob-
tained the desired result I@f)=0 for »=0.5 which
strongly suggestg,=0.5.

VII. CONCLUSION

We have introduced the random-cluster transfer matrix to
calculate exact integer values for the density of states
®(b,c), from which the exact partition functiaf(a,Q) can
be obtained for any value d@, even for complexQ. We
have found a subset of the zeros of the partition function of
the critical Potts model in the complex= \/Q plane that lie
Qiose to or at the Beraha numbers on the negative real axis.

The largest of these determin@s(L), the value ofQ above
which the locus of zeros in the compl@xplane lies on the
unit circle. By studying the scaling behavior©f(L) with L
we find that 10,(L)—0 asL—oo, indicating that all the
zeros do not lie strictly on the unit circle in the thermody-
namic limit.

We have studied the locus of zeros of the dichromatic
polynomials in both the ferromagnetic and antiferromagnetic
cases and find that the Yang-Lee mechanism is at work in the
complexQ plane. We findQ4"(a)=(1—a)(a+3) in agree-
ment with Baxter[10,27, and QE™(a)=(a—1)? which is

rithm to estimate a critical point, the best value of the freewell known from duality arguments. Finally, we introduce a

1.1

1.0
0.9
0.8
0.7
0.6
0.5
0.4

yt

2.4 2.6 2.8 3.0

Q

2.0 2.2

FIG. 13. The thermal exponenys of the Q-state Potts antifer-
romagnets by thesst estimates(filled circles from data forL
=3-8 and free boundary conditions. FQr=3 the BST estimate
(filled triangle) from data forL=3-12 is added and has the slight
horizontal offset for clarity only.

finite-size scaling exponent, that describes the approach of
the edge singularity in the compleQ plane to the critical
point asL —c. We find thaty, varies withQ in much the
same way as the thermal expongntof the ferromagnetic
Potts model, but as yet we have not established a functional
relation betweery, andy,,.

We have also described the microcanonical transfer ma-
trix to evaluate exact integer values for the density of states
Qq(E) for the Q-state Potts model. From the densities of
states®(b,c) and Qo(E) the partition functionsZ(a,Q)
and Zp(a) are obtained at any temperatuae Using the
Fisher zeros of the exact partition functions we have esti-
mated the thermal exponengsof the square lattic€-state
Potts antiferromagnets for2Q<3. ForQ<3 theBsT esti-
mates are quite stable and is well approximated by a
simple algebraic function afi= — (2/7r)cos }(/Q/2). How-
ever, afQ approaches 3, thesT estimates become sensitive
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