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Density of states, Potts zeros, and Fisher zeros of theQ-state Potts model for continuousQ
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The Q-state Potts model can be extended to noninteger and even complexQ by expressing the partition
function in the Fortuin-Kasteleyn~F-K! representation. In the F-K representation the partition functionZ(Q,a)
is a polynomial inQ andv5a21 (a5ebJ) and the coefficients of this polynomial,F(b,c), are the number
of graphs on the lattice consisting ofb bonds andc connected clusters. We introduce the random-cluster
transfer matrix to computeF(b,c) exactly on finite square lattices with several types of boundary conditions.
Given the F-K representation of the partition function we begin by studying thecritical Potts model ZCP

5Z„Q,ac(Q)…, whereac(Q)511AQ. We find a set of zeros in the complexw5AQ plane that map to~or

close to! the Beraha numbers for real positiveQ. We also identifyQ̃c(L), the value ofQ for a lattice of width
L above which the locus of zeros in the complexp5v/AQ plane lies on the unit circle. By finite-size scaling

we find that 1/Q̃c(L)→0 asL→`. We then study zeros of the antiferromagnetic~AF! Potts model in the
complexQ plane and determineQc(a), the largest value ofQ for a fixed value ofa below which there is AF
order. We find excellent agreement with Baxter’s conjectureQc

AF(a)5(12a)(a13). We also investigate the
locus of zeros of the ferromagnetic Potts model in the complexQ plane and confirm thatQc

FM(a)5(a21)2.
We show that the edge singularity in the complexQ plane approachesQc as Qc(L);Qc1AL2yq, and
determine the scaling exponentyq for several values ofQ. Finally, by finite-size scaling of the Fisher zeros
near the antiferromagnetic critical point we determine the thermal exponentyt as a function ofQ in the range
2<Q<3. Using data for lattices of size 3<L<8 we find thatyt is a smooth function ofQ and is well fitted
by yt5(11Au1Bu2)/(C1Du) whereu52(2/p)cos21(AQ/2). For Q53 we findyt.0.6; however if we
include lattices up toL512 we findyt.0.50(8) in rough agreement with a recent result of Ferreira and Sokal
@J. Stat. Phys.96, 461 ~1999!#.

DOI: 10.1103/PhysRevE.63.066107 PACS number~s!: 05.10.2a, 05.50.1q, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

The Q-state Potts model@1# in two dimensions exhibits a
rich variety of critical behavior and is very fertile ground fo
the analytical and numerical investigation of first- a
second-order phase transitions. With the exception of thQ
52 Potts~Ising! model in the absence of an external ma
netic field, exact solutions for arbitraryQ are not known.
However, some exact results at the critical temperature h
been established for theQ-state Potts model. From the dua
ity relation the ferromagnetic critical temperature is know
to be Tc5J/kB ln(11AQ) for the isotropic square lattice
Baxter @2# calculated the free energy atTc in the thermody-
namic limit, and showed that the Potts model has a seco
order phase transition forQ<4 and a first-order transition
for Q.4. The critical exponents for the ferromagnetic Po
model are well known@3–5#.

On the other hand, the antiferromagnetic Potts mode
much less well understood than the ferromagnetic mo
Recently the three-state Potts antiferromagnet on the sq
lattice has attracted a good deal of interest@6–26#. Baxter
@10# conjectured that the critical point of the Potts antiferr
magnet on the square lattice is given byTc
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5J/kB ln(A42Q21), and evaluated the critical free energ
and internal energy. The Baxter formula for the critical te
perature gives the known exact value forQ52, a critical
point at zero temperature forQ53, and no critical point for
Q.3. For continuousQ in the range 0,Q,3, Kim et al.
@27# have studied the antiferromagnetic Potts critical po
through the zeros of the partition function and found go
agreement with the Baxter formula. With the exception
the Ising model, the critical exponents of the Potts antifer
magnets are not known. However, forQ53 the ratio of criti-
cal exponentsg/n is known to be 5/3@16,17#.

By introducing the concept of the zeros of the partiti
function in thecomplexmagnetic-field plane~Yang-Lee ze-
ros!, Yang and Lee@28# proposed a mechanism for the o
currence of phase transitions in the thermodynamic limit a
yielded a new insight into the unsolved problem of the Isi
model in an arbitrary nonzero external magnetic field. It h
been shown@28–30# that the distribution of the zeros of
model determines its critical behavior. Lee and Yang@28#
also formulated the celebrated circle theorem which sta
that the Yang-Lee zeros of the Ising ferromagnet lie on
unit circle in the complex magnetic-field (x5ebh) plane.
However, for theQ-state Potts model withQ.2 the Yang-
Lee zeros lie close to, but not on, the unit circle with the tw
exceptions of the critical pointx51 (h50) itself and the
zeros in the limitT50 @31#.

Fisher@32# emphasized that the partition function zeros
the complex temperature plane~Fisher zeros! are also very
useful in understanding phase transitions, and showed

on
:
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for the square lattice Ising model in the absence of an ex
nal magnetic field the Fisher zeros lie on two circles in
thermodynamic limit. In particular, using the Fisher zer
both the ferromagnetic phase and the antiferromagn
phase can be considered at the same time. The critica
havior of the Potts model in both the ferromagnetic and
tiferromagnetic phases has been studied using the dist
tion of the Fisher zeros, and the Baxter conjecture for
antiferromagnetic critical temperature has been verified@27#.
Recently the Fisher zeros of theQ-state Potts model on
square lattices have been studied extensively for integeQ
.2 @33–46# and nonintegerQ @27#. Exact numerical studies
have shown @27,35,36,40,41,43,44,46# that for self-dual
boundary conditions the Fisher zeros of theQ.1 Potts mod-
els on a finite square lattice are located on the unit circle
the complexp plane for Re(p).0, wherep5(ebJ21)/AQ.
It has been analytically shown that all the Fisher zeros of
infinite-state Potts model lie on the unit circle for any size
square lattice with self-dual boundary conditions@42#, and
the Fisher zeros near the ferromagnetic critical point of
Q.4 Potts models on the square lattice lie on the unit cir
in the thermodynamic limit@45#. Chenet al. @41# conjectured
that whenQ reaches a certain critical valueQ̃c(L) all Fisher
zeros forL3L square lattices with self-dual boundary co
ditions are located at the unit circleupu51. In this paper we
verify this conjecture and find thatQ̃c(L) approaches infinity
in the thermodynamic limit, and we study the thermal exp
nent yt of the square lattice Potts antiferromagnet using
Fisher zeros near the antiferromagnetic critical point.

In this paper we also discuss the partition function ze
in the complexQ plane ~Potts zeros! of the Q-state Potts
model. The Potts zeros atbJ52` have been investigate
extensively to understand the ground states of the antife
magnetic Potts model and the chromatic polynomial in gra
theory@23,26,47–51#. Recently the Potts zeros at finite tem
peratures have been studied for cyclic ladder graphs
ebJ<1 @50#.

In the next section we describe two algorithms to evalu
the density of states, from which the exact partition funct
of the Q-state Potts model is obtained. The first algorith
~microcanonical transfer matrix! is applied to only integerQ
but allows us to calculate the density of states for relativ
larger lattices, while the second algorithm~random-cluster
transfer matrix! gives the density of states for any value ofQ.
In Sec. III we discuss the Potts model ata5ebJ516AQ, its
Potts zeros, and the related properties of the Fisher zero
the subsequent two sections we study the Potts zeros fo
antiferromagnetic interval 0<a<1 ~Sec. IV! and for the fer-
romagnetic intervala>1 ~Sec. V!. In Sec. VI we discuss the
thermal exponentyt of the square latticeQ-state Potts anti-
ferromagnet for 2<Q<3 using the Fisher zeros.

II. DENSITY OF STATES

The Q-state Potts model for integerQ on a latticeG with
Ns sites andNb bonds is defined by the Hamiltonian

HQ52J(
^ i , j &

d~s i ,s j !, ~1!
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whereJ is the coupling constant,^ i , j & indicates a sum ove
nearest-neighbor pairs,d is the Kronecker delta, ands i
51,2, . . . ,Q. The partition function of the model is

ZQ5 (
$sn%

e2bHQ, ~2!

where$sn% denotes a sum overQNs possible spin configu-
rations andb5(kBT)21. If we define the density of state
with energy 0<E<Nb by

VQ~E!5 (
$sn%

dS E2(
^ i , j &

d~s i ,s j ! D , ~3!

which takes on only integer values, then the partition fun
tion can be written as

ZQ~a!5 (
E50

Nb

VQ~E!aE, ~4!

wherea5ebJ and states withE50 (E5Nb) correspond to
the antiferromagnetic~ferromagnetic! ground states. From
Eq. ~4! it is clear thatZQ(a) is simply a polynomial ina. We
have calculated exact integer values forVQ53(E) of the
three-state Potts model on finiteL3L square lattices up to
L512 using the microcanonical transfer matrix (mTM) @52#.

Here we describe briefly themTM @52# on an L3N
square lattice with periodic boundary conditions in the ho
zontal direction~lengthL) and free boundaries in the vertica
direction ~length N). First, an arrayv (1), which is indexed
by the energyE and variabless i , 1< i<L, for the first row
of sites is initialized as

v (1)~E;s1 ,s2 , . . . ,sL!5dS E2(
i 51

L

d~s i ,s i 11!D . ~5!

Now each spin in the row is traced over in turn, introduci
a new spin variable from the next row,

ṽ~E;s18 ,s2 , . . . ,sL!

5(
s1

v (1)
„E2d~s18 ,s1!;s1 ,s2 , . . . ,sL…. ~6!

This procedure is repeated until all the spins in the first r
have been traced over, leaving a new function of theL spins
in the second row. The horizontal bonds connecting the sp
in the second row are then taken into account by shifting
energy,

v (2)~E;s18 ,s28 , . . . ,sL8 !

5ṽS E2(
i 51

L

d~s i8 ,s i 118 !;s18 ,s28 , . . . ,sL8 D .

~7!

This procedure is then applied to each row in turn until t
final (Nth) row is reached. The density of states is then giv
by
7-2
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VQ~E!5(
s18

(
s28

•••(
sL8

v (N)~E;s18 ,s28 , . . . ,sL8 !. ~8!

The permutation symmetry of theQ-state Potts model allow
us to freeze the last spinsL51 of each row. Now we need to
consider onlyQL21 possible spin configurations in each ro
instead ofQL configurations, and we save a great amoun
memory and CPU time.

On the other hand, Fortuin and Kasteleyn@53# have
shown that the partition function is also given by

Z~a,Q!5 (
G8#G

~a21!b(G8)Qc(G8), ~9!

where the summation is taken over all subgraphsG8#G,
andb(G8) andc(G8) are, respectively, the number of occ
pied bonds and clusters inG8. In Eq. ~9! Q need not be an
integer and Eq.~9! defines the partition function of th
Q-state Potts model for continuousQ. The random-cluster
~or Fortuin-Kasteleyn! representation of the Potts model, E
~9!, is also known as the Tutte dichromatic polynomial or t
Whitney rank function in graph theory@50,51#. Introducing
the density of states indexed by the number of occup
bonds 0<b<Nb and the number of clusters 1<c<Ns ,

F~b,c!5(
G8

d„b2b~G8!…d„c2c~G8!…, ~10!

which also takes on only integer values, the random-clu
representation of the Potts model can be written as

Z~a,Q!5 (
b50

Nb

(
c51

Ns

F~b,c!~a21!bQc, ~11!

which is again a polynomial ina21 andQ. We have evalu-
ated exact integer values forF(b,c) on finite L3L square
lattices up toL58 for free, cylindrical, and self-dual bound
ary conditions using the random-cluster transfer matrix. T
self-dual lattices considered in this paper are periodic in
horizontal direction and there is another site above theL
3L square lattice, which connects toL sites on the last (Lth)
row ~Fig. 1!.

The algorithm ~random-cluster transfer matrix! used to
obtain the density of statesF(b,c) is similar in spirit to that
of Chen and Hu@54#. We consider anL3N square lattice
with periodic boundary conditions in the horizontal directi
~length L) and free boundaries in the vertical directio
~lengthN). We definefL

(m)(b,c,$t%) as the density of state
for the L3m square lattice without the horizontal bonds
the mth row as a function of the number of occupied bon
b50,1, . . . ,2L(m21), the number of clusters c
51,2, . . . ,Lm, and the top labels$t%5$t1 ,t2 , . . . ,tL% which
tell whether each site in themth row is connected to the
other sites in the same row.

The first step is to calculatefL
(2)(b,c,$t%) using the

Hoshen-Kopelman~HK! algorithm@55#. The sites in the first
row are labeled 1,2, . . . ,L from left to right andL11 to 2L
in the second row. Cluster labelssi ( i 51,2, . . . ,2L) are de-
06610
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termined for each site and the top labelt j ( j 51,2, . . . ,L)
for the sitej 1L in the second row for each bond configur
tion. The top labelt j is the smallest number of the set o
indices j 51,2, . . . ,L for the sites in the second row belong
ing to the same cluster that includes the sitej 1L. Because
t j< j , the maximum number of sets of top labels$t% is L!
Counting the casessi5 i gives the number of clustersc.

Given fL
(m)(b,c,$t%), fL

(m11)(b,c,$t%) is calculated re-
cursively by

fL
(m11)~b,c,$t%!5 (

g51

gmax

(
b8,c8,$t8%

fL
(m)~b8,c8,$t8%!d~b2b8

2bg!d~c2c82Dc!d~$t8%→$t%! ~12!

for m52,3, . . . ,N21, where g labels the 22L (5gmax)
possible bond configurations in the newly added pieceg con-
sisting of the horizontal bonds in themth row and the verti-
cal bonds between themth row and the (m11)th row, and
bg is the number of occupied bonds ing. The sitesi in g are
labeled from left to right by 1,2, . . . ,L in the mth row and
by L11,L12, . . . ,2L in the (m11)th row. We again use
the HK algorithm to determine the cluster labe
$s1 ,s2 , . . . ,s2L% and the number of clusterscg in g, and the
updatedold top labels$ t̃ 8%5$ t̃ 18 , t̃ 28 , . . . ,t̃ L8% and the new
top labels $t%5$t1 ,t2 , . . . ,tL% making a comparison be
tween the cluster labels$s1 ,s2 , . . . ,sL% and the old top la-
bels $t8%5$t18 ,t28 , . . . ,tL8%. In Eq. ~12! Dc is given by the
Chen-Hu formula@54#

Dc5cg2n2n81n9, ~13!

wheren is the number of the cluster labels satisfyingsi5 i
for i 51,2, . . . ,L, n8 the number of the old top labels sati
fying t i85 i , andn9 the number of the updated old top labe

satisfying t̃ i85 i .
Finally, the density of statesF(b,c) is obtained by

FIG. 1. 535 square lattice with self-dual boundary conditions
7-3
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F~b,c!5 (
g51

gmax

(
b8,c8,$t8%

fL
(N)~b8,c8,$t8%!d~b2b82bg!

3d~c2c82Dc! ~14!

with gmax52L andg made up of the horizontal bonds in th
last (Nth) row.

The random-cluster transfer matrix works very well, b
for comparatively large lattices a considerable amount
memory is required to storefL

(N)(b,c,$t%). At the expense of
a slight increase in the complexity of the code it is possi
to reduce the memory requirements substantially. First,
L! sets of top labels include many unused sets, such
$ . . . ,t i5 i ,t j5 i ,tk5 j , . . . % ( i , j ,k), which account for
56.7% of all sets forL55 and 96.8% forL510 and can be
removed easily fromfL

(m)(b,c,$t%). Second, we should con
sider the fact that only some range ofc is used for a fixedb.
For example, inf5

(5)(b,c,$t%) only c51 to 11 (dc511) are
needed forb524. Herec51 results from the sparsest distr
butions of 24 occupied bonds andc511 from the most com-
pact distributions.dc<11 for all bÞ24, and (dc)max511.
We can calculate (dc)max easily for fL

(N)(b,c,$t%) and re-
duce a large amount of memory. Third,F(b,c) can be ob-
tained directly fromfL

(m)(b8,c8,$t8%)(m<N21) with gmax

52L12L(N2m) using Eq. ~14!. This method decrease
memory requirements but increases CPU time, while
former two methods reduce both the memory and CPU t
requirements. In general, the random-cluster transfer ma
based on Eq.~12! is very fast, taking just 30 s on a PC wit
one pentium 100 MHz CPU to obtainF(b,c) on the 535
square lattice with free boundary conditions.

The density of statesVQ(E) is related to the density o
statesF(b,c) by

VQ~E!5 (
b5E

Nb

(
c51

Ns

F~b,c!QcS b
ED ~21!b2E ~15!

for integerQ. In Eq. ~15! Q need not be an integer and E
~15! defines the density of statesVQ(E) of theQ-state Potts
model for nonintegerQ.

III. THE CRITICAL POTTS MODEL

At the ferromagnetic critical point,ac511AQ, the par-
tition function of theQ-state Potts model becomes

ZCP5(
b,c

F~b,c!~AQ!b12c, ~16!

which is a polynomial inAQ. This defines what we refer to
as thecritical Potts model. Sinceb5Ns21, c51 and b
50, c5Ns set the lowest and highest orders, respectively
the polynomial, we can write Eq.~16! as

ZCP5wNs11 (
r 50

Ns21

Krw
r , ~17!
06610
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wherew5AQ. The coefficientsKr of the new polynomial
ZCP satisfy

(
r 50

Ns21

Kr52Nb ~18!

and

(
r 50

Ns21

Kr~21!r50. ~19!

Table I shows the coefficientsKr for the 838 square lattice
with free boundary conditions.

In addition to the ferromagnetic critical pointac51
1AQ, the pointāc512AQ, which is sometimes referred t
the unphysical critical point, also maps into itself under th
dual transformation (ã21)(a21)5Q @1#. This leads us to
consider the corresponding critical Potts partition function

Z̄CP5w̄Ns11 (
r 50

Ns21

Krw̄
r , ~20!

where w̄52w. Evidently Z̄CP can be obtained fromZCP
simply by continuingw to negative values. With this under
standing we considerZCP(w) for arbitrary complex values
of w. Note that the map of the complexw plane on to the
complexQ plane is now two to one.

Figure 2 shows the Potts zeros in the complexw plane of
the critical Potts model on an 838 square lattice with self-
dual boundary conditions. The zero atw50 is Ns11 degen-
erate, and most of the remainingNs21 zeros lie in the half
space Re(w),0. Several of these zeros lie on the negat
real axis, and these will map on to the positive realQ axis as
shown in Fig. 3. Some of these zeros~Table II! lie at or close
to the Beraha numbers@47#

Bn54 cos2
p

n
~21!

with n52,3,4, . . . and 0<Bn<4. In a study of the phase
diagram of the Potts model Saleur@18# assumed that the
Potts model at the unphysical critical pointāc512AQ is
singular whenQ5Bn , and our results verify this observa
tion. Table II shows the Potts zeros of the critical Po
model on theL3L square lattice that lie at or close to th
Beraha numbers for free (Nb52L222L), cylindrical (2L2

2L), and self-dual (2L2) boundary conditions. As the num
ber of bondsNb increases, the number of the Potts zeros a
close to the Beraha numbersBn increases for a fixedL, and
asL increases the number of the Potts zeros at or close toBn
increases for any specified type of boundary conditions.
expect that in the thermodynamic limit the Potts zeros on
positive real axis cover all the Beraha numbersBn (n
52,3, . . . ).

For self-dual boundary conditions there exist unexpec
Potts zeros on the positive real axis forQ.4 ~Table III!.
These zeros do not exist for nondual boundary conditio
and the largest of these zeros, which we shall denote
7-4
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TABLE I. The coefficientsKr of the partition functionZCP of the critical Potts model on the 838 square
lattice with free boundary conditions.

r K r r K r

0 126231322912498539682594816 1 2561398756299931321297272
2 25524986518920425393717379072 3 166557700763955734137534296
4 800610370286991686735405550336 5 3023834586769553668673015126
6 9347575153984981720573769774608 7 2432621391651611992138798697
8 54404758441262921869365590686720 9 10622442122758805998411306936
10 183329627865230663968273103188608 11 28250693041246140631941370606
12 391942582489345467968147273830784 13 49299877298779689403416203188
14 565568818070192070648821897874128 15 59480343710645032473762907938
16 576045479726330572980576680006144 17 51576141983585940214651292231
18 428419763789360447590812451240080 19 33118875888617069464981886053
20 238937966305748243499621822108592 21 16128586890063159886484561225
22 102094428513780610351844031072160 23 6072979421620672160578214401
24 34010305186209829834846747925664 25 1796243960934824210995700724
26 8960463658391600957849394069728 27 422766873582877156107034298
28 1888880629020154547292686697440 29 80002398539666991992862437
30 321508677911960109772525527808 31 122688547769932427716252035
32 44483696316227122956909056000 33 15331317278052765348109117
34 5024202380355112158475486704 35 1565743527537870861554921
36 464007025651505425890675200 37 130734234800779492211596
38 35006515754308767635423136 39 8903442105259073008726
40 2149257909558929021370016 41 4919554053726132750694
42 106650313357232985654928 43 218670819862371847822
44 4233470330438712180496 45 7724033111750920638
46 132514803950430984480 47 213223740264972576
48 3208188678305076656 49 44981482927972554
50 58534057491001584 51 703623111768595
52 776998275543312 53 78304124284593
54 7144741728032 55 584538167122
56 42365906128 57 2678567507
58 144763280 59 6504139
60 233296 61 6265
62 112 63 1
l

FIG. 2. Potts zeros in the complexw (5Q1/2) plane of the

partition functionZCP for the 838 square lattice with self-dua
boundary conditions.
06610
FIG. 3. Potts zeros in the complexQ plane of the critical Potts
model for the 838 square lattice with free boundary conditions.
7-5
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TABLE II. The Potts zeros on the positive realQ axis of the critical Potts model that lie at or close to t
Beraha numbersBn (n52,3, . . . ).

Boundary condition free cylindrical self-dual self-dual
System size 838 838 535 838

B250 0 0 0 0
B351 1 1 1 1
B452 2.000000 2.000000 2.000000 2.000000
B552.618034 2.618034 2.618034 2.618055 2.618034
B653 3.000031 3.000000 2.992072 3.000000
B753.246980 3.226656 3.246976 3.246980
B853.414214 3.415672 3.412158 3.414685
B953.532089 3.521330 3.524855
B1053.618034 3.618701
B1653.847759 3.839893
B3053.956295 3.957208
B6453.990369 3.990438
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Qmax(L), has an interesting significance. Recently the pa
tion function zeros in the complex temperature plane~Fisher
zeros! have been studied extensively for the Potts mo
@27,33–46#. By numerical methods it has been show
@27,35,36,40,41,43,44,46# that for self-dual boundary condi
tions the Fisher zeros of theQ.1 Potts models on a finite
square lattice are located on the unit circle in the complep
plane for Re(p).0, wherep5(a21)/AQ. Chenet al. @41#
conjectured that whenQ reaches a certain critical valu
Q̃c(L) all Fisher zeros are located on the unit circleupu51.
However, the value ofQ̃c(L) and how it scales withL were
not addressed. We find thatQ̃c(L) is identical toQmax(L)
and thatQ̃c(L) increases withL as shown in Table III.

Figure 4 shows the Fisher zeros in the complexp plane of
the Q-state Potts model on the 434 square lattice with self-
dual boundary conditions. ForQ575 the two zeros on the
negative real axis lie off the unit circle, while forQ576 all
the Fisher zeros lie on the unit circle. AtQ5Q̃c
(575.37 . . . for L54) the two zeros lie onp521. In gen-
eral, for the values ofQ ~both Q<4 and Q.4) that are
determined from the Potts zeros on the positive real axis,
Fisher zeros always lie atp521. Q51 is exceptional in
that all Fisher zeros of the one-state Potts model lie atp5
21 @41#. Note that in Fig. 4~b! the Fisher zeros are groupe
and there exists a wide gap between two neighboring gro
except forp521. Whenever all Fisher zeros lie on the un
circle, the number of groups of zeros is 2Lx and the number

TABLE III. The Potts zeros on the positive real axis forQ.4
for the L3L square lattice with self-dual boundary conditions.

L
4 5 6 7 8

75.373518 185.886317 395.130118 754.036414 1324.684
7.566911 21.911010 40.294754 66.3092

6.401881 15.678097
5.326082
06610
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of zeros for each group isLy , whereLx andLy are the lattice
sizes in the horizontal and vertical directions, respectivel

By using the Bulirsch-Stoer~BST! algorithm @56# we ex-
trapolated 1/Q̃c(L) for finite lattices to infinite size. The er
ror estimates are twice the difference between the (n21,1)
and (n21,2) approximants. Forv51 ~the parameter of the

18

FIG. 4. Fisher zeros in the complexp plane of theQ-state Potts
model on the 434 square lattice with self-dual boundary conditio
for ~a! Q575 and~b! Q576.
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BST algorithm! we get 1/Q̃c50.0007(8) and 1/Q̃c
50.0001(7) forv52. These results imply that in the the
modynamic limit all the Fisher zeros lie on the unit circ
only in the limit Q→` @42#. Conversely, this observatio
implies that the locus of zeros in the thermodynamic limit
finite Q is an open question.

IV. ANTIFERROMAGNETIC POTTS ZEROS

For antiferromagnetic interactionJ,0, the physical inter-
val is 0<a<1 (0<T<`). At zero temperature (a50) the
partition function is

Z5(
b,c

F~b,c!~21!bQc, ~22!

which is also known as the chromatic polynomial in gra
theory @50,51#. Figure 5 shows the zeros of the chroma
polynomial in the complexQ plane for the 838 square lat-
tice for cylindrical@47# and self-dual boundary conditions. I
Fig. 5, except for the zeros at the Beraha numbers 0, 1, a
(Q52.000 000 000 000 7 for cylindrical boundary cond
tions!, the Potts zeros are distributed along curves that
the positive real axis betweenQ52 and 3. The intersection
of the locus of the Potts zeros with the real axis depends
the boundary condition: forL58 and cylindrical boundary
conditions we haveQ52.551 073, while for self-dual bound
ary conditions we find a pair of zeros atQ52.636 589 and
2.645 969, which are slightly larger than the fifth Bera
numberB552.618 034. For the 737 self-dual lattice these
zeros lie atQ52.621 577 andQ52.684 634~Fig. 6!. In ad-
dition, for L57 there are isolated zeros on the real axis at
Beraha numbersB250, B351, and B452, and an addi-
tional zero appears atB653 ~Fig. 6!. Q53 corresponds to
the critical valueQc @48,49# that separates the region (Q
<3) with antiferromagnetically ordered ground states fro
the region (Q.3) of disordered states atT50. Here we
generalize this concept to finite temperatures and de

FIG. 5. Potts zeros in the complexQ plane of the chromatic
polynomial on the 838 square lattice for cylindrical@15# and self-
dual boundary conditions.
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Qc(a) to be the value ofQ for a given value ofa below
which there is antiferromagnetic order. Because four col
are needed to color anL3L square lattice with self-dua
boundary conditions such that no two nearest neighbors h
the same color, there exists a trivial Potts zero atQc53
whenL53,5,7, . . . .

Figure 6 shows the Potts zeros of the dichromatic poly
mial at several temperatures for the 737 lattice with self-
dual boundary conditions. Asa is increased the zeros mov
toward the origin and converge on the pointQ50 for a
51 @50#. The antiferromagnetic critical point is given b
ac(Q)5A42Q21 @10,27#, from which we have

Qc~a!5~12a!~a13!. ~23!

Table IV shows the Potts zerosQc(L) on (L54,6,8) or clos-
est to (L53,5,7) the positive real axis fora50.5. From the
BST extrapolation we obtainedQc51.78(18) ~from L
54,6,8) andQc51.77(36)20.01(3)i ~from L53,5,7) in
agreement with Eq.~23!. Figure 7 compares Eq.~23! ~con-
tinuous curve! with the BST estimates fromQc(a,L) for L
53,5,7 and self-dual boundary conditions for several val
of a.

V. FERROMAGNETIC POTTS ZEROS

For ferromagnetic interactionJ.0, the physical interval
is a5@1,̀ # (T5@`,0#). Figure 8 shows the Potts zeros,
the dichromatic polynomial onL3L lattices with cylindrical

FIG. 6. Potts zeros of the dichromatic polynomial for 0<a<1
on the 737 square lattice with self-dual boundary conditions.

TABLE IV. The Potts zeros on or closest to the positive re
axis for theL3L square lattice with self-dual boundary condition
at a50.5.

L Qc(L) L Qc(L)

3 1.27940010.161071i 4 1.441800
5 1.49987110.0695198i 6 1.574011
7 1.58395310.0407605i 8 1.632666
7-7
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boundary conditions fora511A252.414 . . . and a51
1A352.732 . . . . For free and self-dual boundary cond
tions the distribution of the Potts zeros is similar to that
cylindrical boundary conditions. Unlike the antiferroma
netic Potts zeros which are distributed mainly in the Re(Q)
.0 region~Figs. 5 and 6!, many ferromagnetic Potts zero
lie in the Re(Q),0 region. With the exception of the trivia
zero atQ50 the ferromagnetic Potts zeros are distribu
along a single curve that moves away from the origin aa
increases. There is no zero on the positive real axis, but
zeroQ1(a,L) closest to the positive real axis approaches
real axis asL increases. As in the Yang-Lee theory@28#, we
expectQ1(a,L)→Qc(a) in the limit L→`. Table V shows
theBST estimates fromQ1(a,L) at a511A2 and 11A3 for
different boundary conditions, suggesting that the locus
the Potts zeros cuts the positive real axis atQc52 and 3,
respectively, in the thermodynamic limit. From the ferr
magnetic critical pointac(Q)511AQ, we obtain

Qc~a!5~a21!2, ~24!

which we have confirmed fora511A2 and 11A3 and
other values ofa.1 ~Fig. 9!.

The behavior of the closest zeroQ1(a,L) suggests a scal
ing exponentyq defined as

Q1~a,L !.Qc~a!1AL2yq. ~25!

For finite lattices we define@27,38,39,46,52#

yq~L !52
ln$Im@Q1~L11!#/Im@Q1~L !#%

ln@~L11!/L#
. ~26!

The exponentyq is to the Potts zeros in the complexQ plane
what the thermal exponentyt ~or the magnetic exponentyh)
is to the Fisher zeros in the complex temperature plane~the
Yang-Lee zeros in the complex magnetic-field plane!. Figure

FIG. 7. BST extrapolation ofQc
AF as a function ofa for self-

dual boundary conditions. The continuous curve is given byQc

5(12a)(a13).
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10 shows theBST estimates fromyq(L) for a52 (Qc51),
11A2 (Qc52), 11A3 (Qc53), and 3 (Qc54). The ex-
ponentyq increases asa ~or Qc) increases. Figure 10 com
pares our results foryq versusac(Q) with the den Nijs for-
mula @3,27# for the thermal exponentyt„ac(Q)… of the
ferromagnetic Potts model. Clearly the general behaviors
yq andyt with ac(Q) are similar; these initial results are o
insufficient precision to settle the question whetheryq5yt or
not.

VI. FISHER ZEROS AND POTTS ANTIFERROMAGNETS

For antiferromagnetic interactionJ,0 the physical inter-
val is 0<a5ebJ<1 (0<T<`), which corresponds to

21

AQ
<p5

a21

AQ
<0. ~27!

From the exact partition functions, Eqs.~4! and ~11!, we
have evaluated Fisher zeros of the Potts model. Figure
shows the Fisher zeros in the complexp plane of the three-
state Potts model on a 12312 square lattice with free bound
ary conditions. The Fisher zeros in the complexp plane of
the Q-state Potts model for several values of nonintegeQ
have been shown for the 838 square lattice with self-dua
boundary conditions@27#. Figure 12 shows the Fisher zero
in the complexp plane of theQ52.5 Potts model on an 8
38 square lattice with free boundary conditions. In Figs.
and 12 there is a group of complex zeros approaching
antiferromagnetic critical pointac5A42Q21, equiva-
lently, pc5(ac21)/AQ, and crossing the real axis at th
critical point in the thermodynamic limit@27#. For anL3L

FIG. 8. Potts zeros in the complexQ plane of the dichromatic
polynomial on theL3L square lattices with cylindrical boundar
conditions fora.1.
TABLE V. The BST estimates fromQ1(a,L) for different boundary conditions.

a Free Cylindrical Self-dual

11A2 1.90(10)10.09(24)i 1.94(7)10.15(14)i 1.95(10)10.13(11)i

11A3 2.84(9)20.13(31)i 2.88(2)10.00(15)i 2.89(8)20.03(10)i
7-8
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square latticeac(L) or pc(L) denotes the closest zero to th
antiferromagnetic critical point or edge singularity. Based
the finite-size scaling law of the partition function zeros ne
the critical point@57,58# we expect

Im@ac~L !#;L2yt, ~28!

from which we can estimate the thermal exponentyt(L) for
finite lattices as@27,38,39,46,52#

yt~L !52
ln$Im@ac~L11!#/Im@ac~L !#%

ln@~L11!/L#
. ~29!

Table VI shows the thermal exponentsyt(L) of the Ising
(Q52) antiferromagnet and the three-state Potts antife
magnet for free boundary conditions. By using theBST algo-
rithm we extrapolated our results foryt(L) to infinite size for
2<Q<3. Figure 13 shows the thermal exponentyt of the
Potts antiferromagnet by theBST estimates withv51 ~the
parameter of theBST algorithm! for free boundary condi-
tions. For theBST extrapolation of finite-size results of th
Potts antiferromagnet we prefer free boundary condition
other boundary conditions. The reason for this is that, e
though finite-size effects are larger for free than cylindri
boundary conditions, the edge singularity approaches

FIG. 9. BST extrapolation ofQc
FM as a function ofa for self-

dual boundary conditions. The continuous curve is given byQc

5(a21)2.

FIG. 10. The exponentyq as a function ofa for free, cylindrical,
and self-dual boundary conditions. The slight horizontal offset
data for cylindrical and self-dual boundary conditions is for clar
only. The long-dashed curve is the thermal exponentyt by the den
Nijs formula.
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critical point monotonically only if we consider a sequen
of lattices withL even. For free boundary conditions this
not a problem and the increased effectiveness of theBST

algorithm with longer sequences more than compensates
stronger finite-size effects@23,27#. In Fig. 13 there are two
BST estimates forQ53. The upper estimate resulted fro
data forL53 –8, while the lower one usesL53 –12. In Fig.
13 the continuous curve is the fit to theBST estimates with

yt5
11Au1Bu2

C1Du
, ~30!

where

u52
2

p
cos21AQ

2
, ~31!

and A522.2821, B527.4390, C53.9818, and D
57.4011. The variableu arises naturally in the expression
for the free energyf c@2(p/2)u# at the ferromagnetic@2# and
antiferromagnetic@10# critical temperatures, and in the crit
cal exponentsyt @3,5,27# and yh @4,5# of the ferromagnetic
Potts model. The form used in Eq.~30! has also been used t
describe the critical exponentyh of the ferromagnetic Potts
model @4#.

r

FIG. 11. Fisher zeros in the complexp plane of the three-state
Potts model on 12312 square lattice with free boundary condition
The dashed line is the antiferromagnetic interval.

FIG. 12. Fisher zeros in the complexp plane of theQ52.5 Potts
model on 838 square lattice with free boundary conditions. T
dashed line shows the antiferromagnetic interval.
7-9
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The BST estimates of the thermal exponentyt for Q,3
are insensitive to the parameter of theBST algorithm, v.
However, asQ approaches 3 theBST results for the three-
state Potts antiferromagnet are very sensitive tov. For ex-
ample, we obtainedyt50.50(8) forv51, yt50.59(2) for
v52, andyt50.60(2) for v53 using data forL53 –12.
The BST estimates of the thermal exponents of theQ-state
Potts antiferromagnets for non-integerQ are also sensitive to
v when Q'3. Recently Ferreira and Sokal@20,24# have
suggested the correlation length for the three-state Potts
tiferromagnet has the form

j;a21/yt~2 ln a!r~11c1a1c2a21••• ! ~32!

with yt5
1
2 @18,20,24#, r'1, andc1'15. ForQ53 the sen-

sitivity of the BST estimates of the thermal exponent tov
may result from this kind of logarithmic behavior.

Figure 14 shows theBST results extrapolated from
Im@ac(L)# for L53 –12 of the three-state Potts antiferr
magnet with free boundary conditions as a function ofv
along with the error estimates. When we use theBST algo-
rithm to estimate a critical point, the best value of the fr

TABLE VI. The thermal exponentsyt(L) of the Q-state Potts
antiferromagnets forQ52 and Q53 with free boundary condi-
tions. The last row is theBST extrapolation withv51 to infinite
size.

L yt(L)(Q52) yt(L) (Q53)

3 0.859670530424 0.672417300113
4 0.882900616441 0.840771366429
5 0.895500892567 0.750192805568
6 0.904846051999 0.714132507277
7 0.912493138251 0.694522575800
8 0.918981910221 0.681414203729
9 0.924586147759 0.671514256321
10 0.929481322004 0.663473505003
11 0.933794047470 0.656641075731
` 1.000005~9! 0.50~8!

FIG. 13. The thermal exponentsyt of the Q-state Potts antifer-
romagnets by theBST estimates~filled circles! from data for L
53 –8 and free boundary conditions. ForQ53 the BST estimate
~filled triangle! from data forL53 –12 is added and has the slig
horizontal offset for clarity only.
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parameterv is the critical exponentyt @56#. We have ob-
tained the desired result Im(ac)50 for v50.5 which
strongly suggestsyt50.5.

VII. CONCLUSION

We have introduced the random-cluster transfer matrix
calculate exact integer values for the density of sta
F(b,c), from which the exact partition functionZ(a,Q) can
be obtained for any value ofQ, even for complexQ. We
have found a subset of the zeros of the partition function
the critical Potts model in the complexw5AQ plane that lie
close to or at the Beraha numbers on the negative real a
The largest of these determinesQ̃c(L), the value ofQ above
which the locus of zeros in the complexp plane lies on the
unit circle. By studying the scaling behavior ofQ̃c(L) with L

we find that 1/Q̃c(L)→0 as L→`, indicating that all the
zeros do not lie strictly on the unit circle in the thermod
namic limit.

We have studied the locus of zeros of the dichroma
polynomials in both the ferromagnetic and antiferromagne
cases and find that the Yang-Lee mechanism is at work in
complexQ plane. We findQc

AF(a)5(12a)(a13) in agree-
ment with Baxter@10,27#, and Qc

FM(a)5(a21)2 which is
well known from duality arguments. Finally, we introduce
finite-size scaling exponentyq that describes the approach
the edge singularity in the complexQ plane to the critical
point asL→`. We find thatyq varies withQ in much the
same way as the thermal exponentyt of the ferromagnetic
Potts model, but as yet we have not established a functio
relation betweenyt andyq .

We have also described the microcanonical transfer
trix to evaluate exact integer values for the density of sta
VQ(E) for the Q-state Potts model. From the densities
statesF(b,c) and VQ(E) the partition functionsZ(a,Q)
and ZQ(a) are obtained at any temperaturea. Using the
Fisher zeros of the exact partition functions we have e
mated the thermal exponentsyt of the square latticeQ-state
Potts antiferromagnets for 2<Q<3. ForQ,3 theBST esti-
mates are quite stable andyt is well approximated by a
simple algebraic function ofu52(2/p)cos21(AQ/2). How-
ever, asQ approaches 3, theBST estimates become sensitiv

FIG. 14. BST extrapolation of the imaginary part of the critica
point, Im(ac), for the three-state Potts antiferromagnet as a funct
of the parameterv.
7-10
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to the choice of the scaling exponentv and to the data se
used. Logarithmic or other corrections to scaling may
responsible for this behavior. For 3<L<8 and using the fit
from data for Q,3 we estimate yt(Q53).0.60(2),
whereas if we include calculations forL up to 12 we find
yt(3).0.50(8), in agreement with the leading scaling b
havior suggested by Ferreira and Sokal@20,24#. We hope to
resolve this issue by extending our exact calculations
larger lattices both exactly and by evaluating the density
states by microcanonical Monte Carlo sampling@59#.
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